A Short Note on the Probabilistic Set Covering Problem

نویسنده

  • Anureet Saxena
چکیده

In this paper we address the following probabilistic version (PSC) of the set covering problem: min{cx | P(Ax ≥ ξ) ≥ p, xj ∈ {0, 1} j ∈ N} where A is a 0-1 matrix, ξ is a random 0-1 vector and p ∈ (0, 1] is the threshold probability level. In a recent development Saxena, Goyal and Lejeune proposed a MIP reformulation of (PSC) and reported extensive computational results with small and medium sized (PSC) instances. Their reformulation, however, suffers from the curse of exponentiality − the number of constraints in their model can grow exponentially rendering the MIP reformulation intractable for all practical purposes. In this paper, we give a polynomial-time algorithm to separate the (possibly exponential sized) constraint set of their MIP reformulation. Our separation routine is independent of the specific nature (concave, convex, linear, non-linear etc) of the distribution function of ξ, and can be easily embedded within a branch-and-cut framework yielding a distribution-free algorithm to solve (PSC). The resulting algorithm can solve (PSC) instances of arbitrarily large block sizes by generating only a small subset of constraints in the MIP reformulation and verifying the remaining constraints implicitly. Furthermore, the constraints generated by the separation routine are independent of the coefficient matrix A and cost-vector c thereby facilitating their application in sensitivity analysis, re-optimization and warm-starting (PSC). We give preliminary computational results to illustrate our findings on a test-bed of 40 (PSC) instances created from the OR-Lib set-covering instance scp41.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Set Covering and Network Optimization: Dynamic and Approximation Algorithms

In this short note we summarize our results on development and analysis of approximation and dynamic algorithms for set covering and network optimization problems. The results include probabilistic analysis of set covering algorithms, development and analysis of dynamic algorithms for graph optimization problems, game-theoretic analysis of a file-sharing network model, and approximation algorit...

متن کامل

A Local Branching Approach for the Set Covering Problem

The set covering problem (SCP) is a well-known combinatorial optimization problem. This paper investigates development of a local branching approach for the SCP. This solution strategy is exact in nature, though it is designed to improve the heuristic behavior of the mixed integer programming solver. The algorithm parameters are tuned by design of experiments approach. The proposed method is te...

متن کامل

Multigranulation single valued neutrosophic covering-based rough sets and their applications to multi-criteria group decision making

In this paper, three types of (philosophical, optimistic and pessimistic) multigranulation single valued neutrosophic (SVN) covering-based rough set models are presented, and these three models are applied to the problem of multi-criteria group decision making (MCGDM).Firstly, a type of SVN covering-based rough set model is proposed.Based on this rough set model, three types of mult...

متن کامل

A set-covering formulation for a drayage problem with single and double container loads

This paper addresses a drayage problem, which is motivated by the case study of a real carrier. Its trucks carry one or two containers from a port to importers and from exporters to the port. Since up to four customers can be served in each route, we propose a set-covering formulation for this problem where all possible routes are enumerated. This model can be efficiently solved to optimality b...

متن کامل

Single ‎A‎ssignment Capacitated Hierarchical Hub Set Covering Problem for Service Delivery Systems Over Multilevel Networks

The present study introduced a novel hierarchical hub set covering problem with capacity constraints. This study showed the significance of fixed charge costs for locating facilities, assigning hub links and designing a productivity network. The proposed model employs mixed integer programming to locate facilities and establish links between nodes according to the travel time between an origin-...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007